If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-25+9x^2=0
a = 9; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·9·(-25)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*9}=\frac{-30}{18} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*9}=\frac{30}{18} =1+2/3 $
| 5x+5x+1-6/25=0 | | 16+2x=2(−x+3)−14 | | 6x+5=185 | | 15x+17=9x+19 | | 2x+7=4x+0 | | 6x-5=-4x+20 | | 9x-2=2+7x | | 15x+19=9x+19 | | 84=10x+4 | | 21.8•x=124.26 | | 34x+6=0 | | x÷2-10=180 | | -0.6^2+36t=0 | | 3x-70=360 | | --9x-13=-103 | | 3x÷2-60-10=180 | | 3^4x+6=0 | | -9-2y=-5 | | 2y+17=6y=5 | | 13c−5c+4c−9c+c=16 | | 2x+18=-4x+900 | | 4(n=3)=44 | | 16u-10u+5u-10u=15 | | 15x-189=198 | | 3500=7000-100p | | 1000=7000-100p | | 14x×22x=180 | | 5(3y+3)=20 | | (6x-7)=(3x+2) | | 3y^2+6y^2=90 | | 3x^2+4x=2x+8 | | 36y-14=90+10y |